Ahnak is critical for cardiac Ca(V)1.2 calcium channel function and its beta-adrenergic regulation.

نویسندگان

  • Hannelore Haase
  • Julio Alvarez
  • Daria Petzhold
  • Anke Doller
  • Joachim Behlke
  • Jeanette Erdmann
  • Roland Hetzer
  • Vera Regitz-Zagrosek
  • Guy Vassort
  • Ingo Morano
چکیده

Defective L-type Ca2+ channel (I(CaL)) regulation is one major cause for contractile dysfunction in the heart. The I(CaL) is enhanced by sympathetic nervous stimulation: via the activation of beta-adrenergic receptors, PKA phosphorylates the alpha1C(Ca(V)1.2)- and beta2-channel subunits and ahnak, an associated 5643-amino acid (aa) protein. In this study, we examined the role of a naturally occurring, genetic variant Ile5236Thr-ahnak on I(CaL). Binding experiments with ahnak fragments (wild-type, Ile5236Thr mutated) and patch clamp recordings revealed that Ile5236Thr-ahnak critically affected both beta2 subunit interaction and I(CaL) regulation. Binding affinity between ahnak-C1 (aa 4646-5288) and beta2 subunit decreased by approximately 50% after PKA phosphorylation or in the presence of Ile5236Thr-ahnak peptide. On native cardiomyocytes, intracellular application of this mutated ahnak peptide mimicked the PKA-effects on I(CaL) increasing the amplitude by approximately 60% and slowing its inactivation together with a leftward shift of its voltage dependency. Both mutated Ile5236Thr-peptide and Ile5236Thr-fragment (aa 5215-5288) prevented specifically the further up-regulation of I(CaL) by isoprenaline. Hence, we suggest the ahnak-C1 domain serves as physiological brake on I(CaL). Relief from this inhibition is proposed as common pathway used by sympathetic signaling and Ile5236Thr-ahnak fragments to increase I(CaL). This genetic ahnak variant might cause individual differences in I(CaL) regulation upon physiological challenges or therapeutic interventions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic interactions between L-type voltage-sensitive calcium channel Cav1.2 subunits and ahnak in osteoblastic cells.

Voltage-sensitive Ca(2+) channels (VSCCs) mediate Ca(2+) permeability in osteoblasts. Association between VSCC alpha(1)- and beta-subunits targets channel complexes to the plasma membrane and modulates function. In mechanosensitive tissues, a 700-kDa ahnak protein anchors VSCCs to the actin cytoskeleton via the beta(2)-subunit of the L-type Ca(v)1.2 (alpha(1C)) VSCC complex. Ca(v)1.2 is the maj...

متن کامل

Ahnak, a new player in β-adrenergic regulation of the cardiac L-type Ca channel

Ahnak, originally identified as a giant, tumour-related phosphoprotein, has emerged as an important signalling molecule in a wide range of physiological activities. In this article, current knowledge will be reviewed that places ahnak into the context of cardiac L-type Ca channel function by its interaction with the β2 subunit. Beginning with an overview on structural and functional properties ...

متن کامل

The Involvement of Ser1898 of the Human L-Type Calcium Channel in Evoked Secretion

A PKA consensus phosphorylation site S1928 at the α(1)1.2 subunit of the rabbit cardiac L-type channel, Ca(V)1.2, is involved in the regulation of Ca(V)1.2 kinetics and affects catecholamine secretion. This mutation does not alter basal Ca(V)1.2 current properties or regulation of Ca(V)1.2 current by PKA and the beta-adrenergic receptor, but abolishes Ca(V)1.2 phosphorylation by PKA. Here, we t...

متن کامل

Regulation of Cav1.2 current: interaction with intracellular molecules.

Ca(V)1.2 (alpha(1c)) is a pore-forming subunit of the voltage-dependent L-type calcium channel and is expressed in many tissues. The beta and alpha(2)/delta subunits are auxiliary subunits that affect the kinetics and the expression of Ca(V)1.2. In addition to the beta and alpha(2)/delta subunits, several molecules have been reported to be involved in the regulation of Ca(V)1.2 current. Calmodu...

متن کامل

Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation.

L-type Ca(2+) channels play a critical role in regulating Ca(2+)-dependent signaling in cardiac myocytes, including excitation-contraction coupling; however, the subcellular localization of cardiac L-type Ca(2+) channels and their regulation are incompletely understood. Caveolae are specialized microdomains of the plasmalemma rich in signaling molecules and supported by the structural protein c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 14  شماره 

صفحات  -

تاریخ انتشار 2005